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We present a general algebraic basis for arbitrary systems of units such as those used
in physical sciences, engineering, and economics. Physical quantities are represented as
q-numbers: an ordered pair u= {u, labelu}, that is, u∈ q = X×WB . The algebraic struc-
ture of the infinite sets of labels that represent the “units” has been established: such
sets WB are infinite Abelian multiplicative groups with a finite basis. WB is solvable as
it admits a tower of Abelian subgroups. Extensions to include the possibility of ratio-
nal powers of labels have been included, as well as the addition of named labels. Named
labels are an essential feature of all practical systems of units. Furthermore, q is an Abe-
lian multiplicative group, and it is not a ring. q admits decomposition into one-dimen-
sional normed vector spaces over the field X among members with equivalent labels.
These properties lead naturally to the concept of well-posed relations, and to Buck-
ingham’s theorem of dimensional analysis. Finally, a connection is made with a Group
Ring structure and an interpretation in terms of the observable properties of physico-
chemical systems is given.
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1. Introduction

The physical sciences and engineering disciplines are quantitative sciences,
and as such, significant numerical computation and theoretical work is carried
out using physical quantities. However, these quantities are not pure numbers, but
rather more complex objects that include a label. For example, when we measure
an area of a sphere of radius 1 cm, we obtain 4π cm2, while if we measure the
energy of a particle of 10−3 kg traveling at 5×102 km s−1 in free space, we obtain,
250 J. To distinguish these quantities from pure numbers (C, the complex num-
bers), we will call them q-numbers, and these will be denoted herein with italics.

The algebraic structure of the labels of physical quantities has been hinted
at in many books on dimensional analysis [1–3]. Starting with the classic work
by Bridgman [1], most of these books concentrate on the applications to the
derivation of dimensionally correct equations in various fields of physics and
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engineering. Langhaar [2] even includes a chapter called “Algebraic Theory of
Dimensional Analysis”, but the word “group” is nowhere to be found in this
chapter. The mathematical foundation taken by engineers, chemists and physi-
cists has depended on the concept of dimensional homogeneity without actu-
ally developing the abstract algebra [3]. De Jong [4] has presented the util-
ity of dimensional analysis in the field of economics and his book includes
a translation of an article written more than 40 years ago by Quade [5], who
presented a full abstract algebraic description of dimensional analysis using an
Abelian group construction based on vector spaces. However, Quade’s approach
is restrictive, and the important extensions to names and rational exponents were
not considered.

For example, consider the expression for the root mean squares displace-
ment from the origin of a Brownian particle executing a random walk in
unbounded three-dimensional space:

xrms =
√

〈x2〉 =
√

6Dt,

D is the diffusion coefficient, with units m2 s−1, and t is the time, with units
in s (m is the abbreviation of meter, and s, that of second). In practice, we do
not worry about whether we do this computation by first multiplying out all
the numerical quantities, yielding 6Dt m2 and then taking the square root, or
whether we take the square root of each quantity separately, multiply, and treat
the units as follows: m s−1/2 s1/2 = m. The basic question can then be stated: does
there exist an abstract algebraic structure wherein the latter manipulations are
naturally defined? Quade’s answer is no, you must never take the square root of
a basic unit; only integral powers are allowed. This answer is unsatisfactory –
much more general structures can actually be defined.

In this work we obtain an algebraic foundation for systems of units as used
in practice in the natural sciences and economics. Such a system should be large
enough to include, for example, square roots of basic scales, for they do appear
in calculations and in certain systems of units discussed further below. A further
example is the activity coefficient of an ionic species in a polyelectrolyte solution.
The logarithm of the activity, in the limiting case of small ionic strength, is pro-
portional to the square root of ionic strength, which has units, mole1/2 kg−1/2.
Another interesting development that requires the consideration of more general
exponents is the fractional calculus [6]. The application to diffusion and kinetics
is discussed in the recent very accessible article by Sokolov et al. [7]

In this paper, we present a flexible algebraic structure that can accommo-
date practically any system of units, including scaling and convenience names for
labels. In addition, we make contact with a modern algebraic structure that can
be interpreted as containing the description of all properties of all possible phys-
ical systems. The presentation is directed principally to non-mathematicians, in
the language of mathematicians.
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2. Definitions

2.1. q-number

A quantity u is a q-number iff u is the ordered pair, u= {u, labelu}, where
u ∈ C, the complex numbers, and labelu ∈ W. Often u is restricted to the real
numbers, R.

The set W is the set of “words” that we can use as labels, commonly
referred to as “units”. For the above definition to have meaning, we need to
specify the set W and any operations among the members of this set. However,
for convenience, we will define the basic operation first and thereby obtain some
compact nomenclature to fully specify the set W. Note that we will use “=” to
signify “assignment”, and “= =” to signify an equality relation.

2.2. Multiplication of labels

We define a multiplication operator “.” between labels as follows. For any
labelj ∈ W:

(1) label1 · label2 = label1label2 ∈ W, “Closure”

(2) (label1 · label2) · label3 = label1 · (label2 · label3)= label1label2label3,
“Associativity”

(3) There exists a unique “unit” label, 1 ∈ W, such that:

1 · label = label · 1 = label, “Neutral element”

(4) For every label ∈ W, there exists a unique inverse label, label−1 such
that,

label−1 · label = label · label−1 = 1, “Inverse”

For convenience, we can also represent the inverse as the label, 1/label.

(5) label1 · label2 = label2 · label1, “Commutativity”

Thus, the structure {W, .} is an Abelian group [8,9]. There are no other
operations defined on W. In particular, there is no “addition” operation on
labels, so W is not a ring, much less a field. We “can’t add apples to oranges”,
is the vernacular expression of this property.

2.3. Powers of labels

The power “n” of a label, labeln, for n> 0 ∈ Z, integers, is defined as an
iterated multiplication:
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labeln = label·label· · · label·label = label label· · · label label, n times.
By the inverse property, there exists an inverse for this object, which is the

iterated multiplication of the inverse label, label−n.
From the iterated multiplication definition it is readily observed that

the normal rules for exponents are satisfied for powers of labels, viz., labeln

·labelm = labeln+m, where n and m are any integers. Thus, we also define the zero
power for any label ∈ W as the unit label:

label0 = 1.

2.4. Rational powers

Consider the object: label1/n, n> 0 ∈ Z. For n= 1, we just have label. We
would like this object to belong to the set W for any n. Then, this power
of label will essentially have to be a generator for n> 1, and W will not be
finitely generated. If we multiplicatively iterate this label m times, then we pro-
duce (label1/n)m = labelm/n. Thus the natural definition leads us to the consider-
ation of an arbitrary rational exponent, and the iteration of label1/n, n times,
yields label.

Furthermore, we extend the definition of the inverse label for rational pow-
ers of a label:

(labela)−1 = label−a,

so that the rules of exponents are satisfied over the rationals, Q.
This construction can be clarified by considering the logarithm map log:

W → Q, where log[labela] = a, where a belongs to the commutative ring of frac-
tions Q. Since the elements of Q are defined as the equivalence classes of frac-
tions [9], the logarithm map can be taken as bijective and invertible. Thus, the
construction of a ring of fractions [9] carries over into the exponents of the labels
in W.

So far, the description of W is quite general, and it admits many types of
realizations. We will be interested in specific realizations that have a finite basis,
B. The specification of the basis set allows for the explicit construction of the
elements of the free Abelian group WB .

2.5. Basis set and the free groups WB

In actual systems of units, all labels are obtained from a small set of basis
labels. These labels represent scales for various physical quantities, and thus can
be chosen in many ways, generating different, but equivalent systems of units.
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Thus, to keep the situation general, we will use a generic representation for the
basis, Bn = {l1, . . . , ln}. Then, we can at once construct the set WB :

WB = {l, l(a1, . . . , an)=
n∏
k=1

l
ak
k ; ak ∈ Q, lk ∈ Bn}.

This set is countably infinite because any label is essentially a map to an n-tuple
of rational numbers: l= l(a1, . . . , an). The set WB is generated by the infinite set
of words, {l1/k1 , . . . , l

1/k
n , |k| = 1, 2, 3, . . . }, which contains all “roots” of the labels

and their inverses. Then, it is evident that the explicit construction given above
produces reduced labels (there are no redundant sequences containing the prod-
uct of a generator and its inverse). Thus, the set WB is is the free group gener-
ated from the basis B.

Definition. The rank of a group WB is the cardinality of the basis set, B.

With these definitions, the WB are free Abelian groups of rank n. This, of
course, is inconvenient. There are very long labels, in fact infinitely long labels,
in the group WB . This inconvenience will be addressed later by allowing named
labels to stand for a reduced label. Furthermore, there is the inconvenience of the
magnitude of q-numbers, which ranges over many orders of magnitude in phys-
ical problems. The use of reduced labels forces us to carry large magnitudes of
powers of 10 in the numeric representation of a q-number. This inconvenience
will also be addressed by generalizing the group WB to include scaled labels. A
free group WB is one were there is no scaling and no named labels.

Examples. The MKS system of units: G= {kilogram,meter, second}. The cgs
system of units: G= {gram, cm, second}. These are systems of rank 3.

We must show that WB constructed this way, combined with the label mul-
tiplication operation is an Abelian group.

Proof.

(1) Closure: the product of any two labels is in the set:

label · label′ = la+a′
lb+b

′ · · · le+e′ = la′′
lb

′′ · · · le′′ ∈ WB

because the rationals are closed with respect to addition.

(2) Associativity: follows directly from the associativity of label multiplica-
tion.

(3) Neutral element: the label with all ak = 0 is the unit label.
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(4) Inverse: For any label not the unit label = lalb · · · le, label−1 = l−al−b
· · · l−e, whereas 1−1 = 1.

(5) Commutativity: follows directly from the commutativity of label multi-
plication.

Lemma. Let Wk be the group WB of rank k. Then the groups W1, . . . ,Wn form
an Abelian tower.

Proof. First note that Wk ⊂ Wk+1, for l(a1, . . . , ak, 0)∈ Wk+1, l(a1, . . . , ak,

0)= l(a1, . . . , ak)∈ Wk.
Since multiplication is commutative, then the subgroups are normal:
lWkl

−1 = Wk for l ∈ Wk+1. Now we need to show that the factor groups
Wk+1/Wk are Abelian. The factor group is the group of cosets of Wk with
respect to Wk+1. The cosets are sets of the form lWk. Then (l1Wk)(l2Wk)=
(l2Wk)(l1Wk) for l1, l2 ∈ Wk+1, because all label multiplications are commutative.
Thus the factor groups are Abelian.

Remark. We can easily write down an expression for the cosets in our case,
because the groups are infinite. The coset l(a1, . . . , ak+1)Wk = {l, l(c1, . . . , ck,

ak+1), cj ∈ Q}, contains all labels in Wk+1 which have the ak+1 power of the (k+
1)th basis element.

Remark. The Abelian tower can be extended to include the trivial subgroup con-
taining only the unit label, since the unit label to any power is again the unit
label. Thus, the group WB is solvable.

Remark. Not all members of the tower are useful for even a restricted set of
physical units. A group of labels must contain sufficient generators to specify at
least, energy. This requires scales for mass, length, and time. Thus, the minimum
rank that contains energy labels is 3. However, the rank 1 system containing only
the generators for a length scale, is a useful system for simple mensuration.

2.6. Cyclic subgroups

Consider the set, Ck = {l, l= ljk , j ∈ Z}. This is clearly a cyclic group, of
infinite period, generated by lk. Ck is a subgroup all Wm with m�k. Further-
more, the product group

∏k
j=1 Cj is a subgroup of Wm with m�k. The prod-

uct groups are not cyclic, but are Abelian. However, the product groups are not
normal subgroups of Wn, and form a non-Abelian tower in Wn. This property
arises because the exponents in Wn can range over the rationals and thus are not
limited to integers. The groups Wn contain cyclic subgroups, but are not cyclic
themselves.
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WB can also be properly characterized by noting that is a set of “pure
monomials” of a Group Ring [10]. However, we emphasize that the polynomials
in this Group Ring do not correspond to physical quantities, but can be given a
related interpretation. We elaborate on this in section 4.

3. Extension to scaled labels and derived labels

As mentioned previously, the free groups are inconvenient for ordinary use.
In practice, we use many names for labels that recur often. Let us describe them.

3.1. Scaled labels and derived labels

Scaling: It is convenient to enlarge our labels by considering multiplication
by a non-zero real number, r.

Definition. Multiplication by a scalar: r ·label = label·r = rlabel for r �= 0 ∈ S ⊂ R
and label ∈ WB . In addition, r ′ · (r · label)= r ′ · rlabel = r ′′label and r, r ′r ′′ ∈ S. S
is an Abelian multiplicative subgroup of R. In practice, S ⊂ Q.

Labels containing a real number r are called scaled labels. Typically, powers
of 10 are chosen for the values of r, and new names are invented for such labels.
For example, µm = 10−6 m, where m is meter. Not all possible scaled labels have
such names. We will denote a name by an identity mapping

Thus, µm = name[10−6 m] = 10−6 m. The name is unique. The existence of
scaled labels implies that the representation of a q-number is not unique. Thus,
the q-number u can be represented with a possibly infinite number of scaled
labels, for a non-zero scaling r.

name[r label] = r label.
u= {u, label} = {u/r, r label} = {u/r, name[r label]}.

Thus, scaling induces an equivalence relation in the q-numbers.
Derived labels: Products of labels can be also be given a unique name, as in

the case of scaled labels. For example, a typical unit for viscosity, the Poise, is a
scaled label:

Poise = name[10−1 kg m−1 s−1] = 10−1 kg m−1 s−1,

where kg, m, s are basis labels representing the kilogram, the meter, and the sec-
ond, respectively. In practice, we just write the name of the derived label, say,
Poise.
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3.2. The generalized group W(B, S) and the names extension

The introduction of scaled labels implies that we must enlarge our group
so that it will no longer be a free group. First we enlarge to include just scaled
labels. Since we have added a new Abelian multiplicative group, S, we have a
new structure.

W(Bn,S)= {l, l(a1, . . . , an; s)= r
n∏
k=1

l
ak
k ; ak ∈ Q, lk ∈ Bn, r ∈ S}.

Clearly, the restriction to r = 1, yields a free group, i.e., W(Bn, {1})= WB . The
set is closed with respect to the multiplication of scaled labels, it is associa-
tive, and the inverse always exists, as the products of the label inverse and the
scale inverse. It is also commutative. Thus, the generalized group W(Bn,S) is an
Abelian group over Q and its members are monomials of a group ring R[WB ].

Some of the basic properties of the free groups are conserved in the
extended structure. For example, there is the natural tower of subgroups and
W(Bn,S) is solvable. We proceed immediately to extend this structure to include
names.

Let BN be a finite set of labels we call “names”. Let N be the Free
Abelian multiplicative group over Q generated from the words in BN , whose
only intersection with W(Bn,S) is the unit label. This is guaranteed by having
an empty intersection of the basis sets Bn and BN . Let, name: N → W(Bn,S) be
an injective homomorphism. This map is general not surjective. Then the names
extended set theoretic product,

W(Bn,S,N)= W(Bn,S)N = NW(Bn,S)

is an Abelian multiplicative group (essentially, by construction). At this point it
is worth noting that no rational powers of the names appear. This is not a sig-
nificant limitation. One can just as easily abandon the free group of names N
and use the non-finitely generated group containing all rational powers of the
names in BN as well. This will allow us to consider, for example, J1/3, if we wish.
This further extension is trivial.

3.3. Equivalence of labels

The irreducible form of a label is the expression, in terms of a reduced label,
and possibly a scale factor r:

Irreducibleform[label] = r
n∏
k=1

l
ak
k = r label reduced.
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Two labels are equivalent, label1 = = label2, iff the reduced label of their irreduc-
ible forms is the same. The map, Irreducibleform, from W(Bn,S,N) to W(Bn,S)
operates as follows:

Irreducibleform[name[r label]] = Irreducibleform[r label]
= r IrreducibleForm[label]

and,

IrreducibleForm[label reduced] = label reduced

for any label in W(Bn,S,N). Note that according to this definition, all labels in
W(Bn,S) are reduced (or irreducible). The Irreducibleform map is surjective but
not injective.

The utility of recognizing the concept of equivalence is that any label in
W(Bn,S,N) can be replaced by another equivalent to it at our convenience. For
example, the set W(Bn,S,N) contains labels (and factors in labels) of the form
name[r label]r−1 label−1 = = 1, i.e. equivalent to the unit label. In fact, the irre-
ducible form of W(Bn,S,N) is just W(Bn,S). The addition of the set N is merely
a convenience and does not change the system of units in the least. In practice,
one generally reduces the labels after operations with q-numbers to the reduced
form (that is, multiplying the numeric part of u by r), and perhaps abbreviating
some of the factors by using names in N.

Examples. Irreducibleform[newton kg−1 s2] = m, is actually reduced.

Irreducibleform[ newton kg−1 s2] = 10−3 m

= mm, is not reduced, but scaled.

3.4. Particular realizations of W(Bn,S)

The structure of W(Bn,S) is specified by two aspects: (1) the algebraic
structure imposed by the definitions above and (2) the nature of physical law.

The nature of physical law indicates that all labels can be generated from a
small set of primary labels (the basis). The choice of these primary labels spec-
ifies a system of units, and thus the explicit form of the set W. The fundamen-
tal statement of physical law is that all processes in nature utilize as currency of
interaction a quantity called energy, and that this quantity is remains the same in
any interaction. Thus energy can be changed in form, as from mass into kinetic
energy, or from electromagnetic into heat, or from heat into mechanical, etc., but
the total amount remains constant in any process.

Physical processes are of two basic types: mechanical and entropic. The
simplest specification of mechanical energy can be obtained by considering
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the simple kinetic energy of a free particle of mass m, moving with veloc-
ity v. Newtonian physics tells us that E=mv2/2. Thus the specification of
mechanical energy requires the specification of a scale for mass, a scale for
length, and a scale for time. In addition, thermodynamics shows the existence
of non-mechanical energy and leads us, via the second law, to the definition of
temperature. This implies that we need a scale for temperature. In addition, three
other base units are defined: an amount of substance, an amount of electric cur-
rent, and an amount of luminous intensity [11].

The finite set of primary labels, {mass scale, length scale, time scale, tem-
perature scale, substance scale, current scale, luminosity scale}, can be called the
basis set of the system of units.

Two other systems of units are in common use (but many others exist). The
English or British system, used mostly in engineering, is defined by the basis set
{pound, foot, second, Rankine, mol}. An older decimal system still in use by
die-hard scientists, is the “cgs” system {gram, cm, second, Kelvin, mol}. Physi-
cal law demands that all systems of units produce the exact same specification of
a physical system. This implies that there is a set of conversion factors between
the systems, in the form of scaled labels. For example,

foot = (3145/10000) meter,

pound = (10/22) kilogram,
Rankine = (9/5) Kelvin.

Extensive conversion tables between units can be found in the Handbook of
Chemistry and Physics [12]. Note that these examples of other unit systems are of
lesser rank that the SI system, defined below. In the “CGS” system, for example,
one can omit a scale for charge, and therefore express charge in terms of square
roots of other scales. This has some inconveniences, but it is a possibility. Thus
we retain our generality by allowing monomials over rational numbers.

For concreteness, we will give the explicit form of one set W(Bn,S) for the
SI (International System) system of units, B7 = {kilogram, meter, second, Kelvin,
mole, ampere, candela}, below. We note in passing that one can also work with
other members of the tower of the set W by using a subset of the generating set.
The minimal subset where energy can be defined is, for example, the “MKS” sys-
tem defined by {kg, m, s} which is suitable for describing the behavior of a small
set of particles with prescribed gravitational interactions.

In the case of the restricted rank 5 SI system where we omit current and
luminosity for brevity, we have the generating set: {kg, m, s, Kelvin, mol}. The
extension to the full set of rank 7, is obvious. Then,

W(B5,S)= {l, l= r kga mb sc Kelvind mole; a, b, c, d, e∈ rationals, r ∈ S}.
And the multiplicative group S = {10n, n∈ Z}. A restriction to a finite subgroup
of this S would be quite sufficient in practice.
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4. Algebra of q-numbers

Now that we have defined the algebra of the labels, we must define an alge-
bra for the q-numbers themselves. Let q be the set of q-numbers. A quantity u
is a q-number iff u is the ordered pair, u= {u, labelu}, where the numerical value
u ∈ C, and labelu ∈ W(Bn,S,N). Often u is restricted to the real numbers, R.

4.1. Addition

The addition of q-numbers is defined as,

v= u+ w= {u, s labelu} + {w, s ′ labelw} = {us + ws ′, label}

iff for the reduced labels, labelu = = labelw = = label. That it, the labels must be
equivalent via the irreducible form map introduced in the previous section. Of
course, after the result of the addition, we are free to rescale and rename if con-
venient. That is, we can write,

v= {us + ws ′, label} = {(us + ws ′)/s ′′, s ′′ label}
= {(us + ws ′)/s ′′, name[s ′′ label]}.

Example. 10 cm + 1 m = 1.1 m = 110 cm, where cm = name[10−2 m].

This is a severe restriction upon addition, inherited from the general lack
of additivity of labels. Thus, as detailed below, the addition operation partitions
the set q into disjoint one-dimensional vector spaces, one for each (reduced) label
in WB .

Definition. Two q-numbers are congruent, iff their reduced labels are identical.
We can say that the addition of q-numbers must be congruent, or is defined only
between congruent q-numbers.

Multiplication by a complex number is distributive over congruent q-
numbers:

z(u+ w)= {zu+ zw, label} = zu+ zw.
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4.2. Map to the complex (or real) numbers

For the set of all q-numbers congruent to v, there exists a special set of
q-numbers in this set with a reduced label, which carry all congruent q-numbers
to the pure number form:

N [label] = (1, label−1
).

Then, v= νN [label] =N [label] · ν= {v, 1} is a pure number.

Proof. All quantities of the form {z, 1}, z∈ C, are congruent with each other
and remain so under addition and multiplication. Thus, the map {z, 1} → z is
an isomorphism. Thus these quantities have the same properties as the complex
numbers and cannot be distinguished from them.

If a q-number has a scaled label, it must first be transformed to a reduced
label to arrive at the pure number form. Thus,

u s= {u, s label} → {us, label} = us and,
N [label] · us = {us, 1} = us.

Magnitude: The magnitude of a q-number is the map:

‖ν‖ = {|v|, label}.
Multiplication: The quantity ν= uw is always a q-number.

ν= {u, labelu}{w, labelw} = {uw, labelu labelw}.
We note that, for non-unit labels, v is never congruent with the factors. The mul-
tiplicative inverse of the q-number v is also defined for non-zero magnitude |v|,

ν−1 = {1/v, label−1
v },

and the neutral element is just {1, 1}. Thus q \{0, 1} forms an Abelian group
under multiplication, where we take {0, 1} to be the equivalence class of all zero
magnitude q-numbers.

4.3. Algebraic structure of q

We have been able to determine that q, excluding the zero magnitude class,
is a multiplicative Abelian group. A concise representation of q is

q(C,WB)= C × WB.

If we restrict ourselves to the vector space of q-numbers congruent to a given
label, then it is obvious that the elements of this vector space (see below) do not
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form a multiplicative group. Thus, even though within the vector space we do
have additivity, only one vector space contains the multiplicative unit label. Thus,
in general we do not have a ring structure for the operations of addition and
multiplication of q-numbers. There is only one trivial ring, for the vector space
containing the unit label. This ring is that of the complex or real numbers (which
are actually fields). The extensions W(Bn,S) and W(Bn,S,N) extend q with scal-
ing and convenient names.

4.4. Vector spaces

What kind of space does a general n-tuple of q-numbers {v1, . . . , vn} belong
to? We can surely make maps where not all the q-numbers are congruent. How-
ever, if one restricts to a congruent n-tuple, then there is an induced vector space
from the pure number components, and things are normal. This is what is actu-
ally meant in practice when we say, “momentum space”, “coordinate space”,
“velocity space”, etc. Physicists are careful to use only congruent members in
defining these vector spaces.

Theorem. The set Vn of all n-tuples of congruent q-numbers ν= {ν1, . . . , νn} is
an n-dimensional vector space. (This trivially covers the one-dimensional case
alluded to above.)

Proof. (1) Abelian additive group:
Define the addition, of q-numbers as, v+u = {v1+u1, . . . , vn+un}, then we

obtain:

v + u = {ν1 + u1, . . . , νn + un} ∈ Vn, “closure”
w + (v + u)= (w + v)+ u “associativity”
0 + v = v + 0 = v, 0 = {0, . . . ., 0}, v ∈ Vn “neutral element”
v−1 = − v = {−v1, . . . ,−vn} “inverse element”
v + u = u + v, “commutativity”

(2) Define the multiplication of an n-tuple by a complex number by,

zv = {zv1, . . . , zvn}, then,

Since the z∈ X form a field, such a multiplication is associative, distributive
over the field, distributive over the q-n tuples:

z1(z2v) = {z1z2ν1, . . . , z1z2νn} = (z1z2)v

(z1+z2)v = {(z1 + z2)ν1, . . . , (z1 + z2)νn} = z1v + z2v,

z(v1 + v2) = {z(ν1 + u1), . . . , z(νn + un)} = zv1 + zv2.
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Vn is a normed vector space, for the Euclidian norm is well defined:

‖v‖2 =
n∑
k=1

|νk|2, where |νk|2 = ν∗
k νk = {ν∗

k , label}{vk, label} = {|vk|2, label2}

and the conjugate vector v∗ ∈ Vn is used to make the inner product, 〈v∗|v〉 = ‖v‖2.

The norm is then ‖v‖ =
{√∑n

k=1 |vk|2, label
}

, and is congruent with members
of Vn.

4.5. The group ring C[WB ]

Do the q-numbers fit into a larger algebraic structure? We have remarked
previously that a q-number, as usually written, u label, can be viewed as “pure
monomials” in a Group Ring [10] over the complex (or real) field. The Group
Ring is the set of all possible formal sums:

c1l(a11, . . . , a1n)& · · · &ckl(ak1, . . . , akn),

where ck ∈ C, the addition, & is associative and we identify the product of the
multiplicative identity in the field times a label, as just the label. It is clear that
WB is contained in the Group Ring. Since we have emphasized that neither q
nor WB is a ring, how can this be interpreted? Since q-numbers convey infor-
mation about the properties of specific systems found in nature, it is natural to
think of all the properties that a given system could have. These properties will
form a list of q-numbers, and they will each have their own numerical value and
label. Thus we can identify the set of properties of a particular system with an
element in the Group Ring because these properties exist at once. Different sys-
tems will have different known properties and will correspond to different ele-
ments in the Group Ring. The entire Group Ring can be interpreted as the set of
all possible properties of all possible systems in nature. Physical theory, in princi-
ple, provides a link between all the monomials because they can all be obtained
from a small set of fundamental q-numbers in nature. Thus, physical theory is a
map between a set such as {number of electrons, number of protons, number of
neutrons, speed of light, Planck’s constant, etc.} → C[WB ]. The more fundamen-
tal the theory, the smaller the domain, and the larger the range of the map. We
note in passing, that in the quantum domain (where not all systems are distin-
guishable), this map is not even injective, but it is so in the macroscopic domain.

Furthermore, physical theory can, from time to time in the course of its
development, produce identifications between certain monomials in the Group
Ring. A very famous example is Einstein’s identification of energy E= E J with
mass, via E=mc2. Thus, two monomials that appeared separately in the Group
Ring, can become identified. This implies, that in general, there exists an ideal of
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WB such that the quotient group is all that needs to be considered. Our knowl-
edge of the Ideal is imperfect, and will be so into the future.

5. Applications

That there exist applications is obvious, but in this section we emphasize
the concepts of well-posed expressions and the consequent utility of dimensional
analysis.

5.1. Expressions containing q-numbers

There are two basic types of expressions involving q-numbers. The first type
is a map from q-numbers to the complex numbers, while the second involves a
map from q-numbers to a q-number.

Definition. Well-posed expressions.
An expression f = = g[v1, . . . ,vn] is well posed iff f and g are congruent.
If labelf = labelg = 1, then the expression is a map from a set of q-numbers

to the complex numbers.
Linear map. f = =�kakvk requires the existence of a set of q-numbers

ak = {ak, label−1
vk }, such that the products akvk have the unit label.

Non-linear map. The map must be made of products and sufficient auxiliary
q-numbers so that the label of each complete assembly of factors is equivalent
to 1.

The preceeding can be generalized to a map from q-numbers to a q-number.
In the linear map case, then ak = {ak, labelf label−1

vk } and in the non-linear case,
each complete assembly of factors must have a label equivalent to labelf . These
statements presage Buckingham’s theorem, the basic theorem of dimensional
analysis see below.

Corollary. The arguments of functions of pure numbers must be well posed,
that is, congruent to a pure number. Thus, the argument of a pure func-
tion must always be of the form av, accompanied by an auxiliary q-number
a= {a, label−1

v }.

Example. If x is a q-number, then the argument of cos must be cos[ax]. Thus
it is not well posed to say, “let t be the time, then an oscillatory behavior can
be represented by cos[t ]”; one must say, instead, cos[ωt ]. Thus, the frequency
ω= {ω,Hz = sec−1} must appear because time is a q-number, t = {t, sec}.
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5.2. Remark: measurement

The results of any measurement are q-numbers over the real numbers. Thus,
Re[z] = {Re[z], label} and Im[ν] = {Im[v], label} can be associated with results of
measurements.

Example. The dielectric constant of an isotropic material is of the form,

E=Eo(a + ib)

with label = C2 N−1 m−2 and Eo a is related to the electrical energy stored in a
material, while Eo b is related to the energy loss to heat in an insulator or to
the conductivity in a conductor.

5.3. Operators

Higher-order quantities such as tensors and operators can be constructed
strictly out of congruent q-numbers. For example, a derivative with respect to a
q-number x is defined as

∂

∂x
=

{
∂

∂x
, label−1

x

}
.

In order to satisfy congruency, auxiliary q-numbers will often be introduced.
These are usually called parameters. Examples of these are the fundamental con-
stants of nature (speed of light, Planck’s constant, the masses and charges of the
elementary particles and atoms, etc.), or parameters of oscillations such as the
frequency and wavelength. In the following, we give some explicit examples of
some of these constructs.

5.4. Dimensionless variables

In order to obtain the numeric solution to a physical problem, one must
find a congruent label for all groupings of variables, and then map to a pure
number using the appropriate N [label] function. The last step can be done
implicitly or explicitly. Mapping to a pure number is often referred to as intro-
ducing dimensionless variables.

Implicit example: Ideal gas law.
The relation between q-numbers is P = = nRT/V , where P is the pressure,

n is the number of moles, R is the gas constant (a parameter), T is the temper-
ature, and V the volume of the vessel containing the gas. The explicit form of
these q-numbers, in standard units (not abbreviated, for clarity), is

P = {P, Pascal}, T = {T, Kelvin}, V = {V, liter}, n= {n, mole},
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R = {R, Joule Kelvin−1 mole−1}.
A naı̈ve computation using these standard units would lead the unwary student
to assume that the label Pascal = = Joule/liter, which is incorrect, for there is a
hidden scale factor. One does not discover this unless one works out the algebra
for the labels, and this is the point of the example. A partially reduced form of
Pascal = newton m−2, while liter = 10−3 m3, and Joule = newton m. Note that it is
not necessary to go all the way to the irreducible form of the label –a “common
denominator” will do. Thus, we see that by introducing the auxiliary q-number,
or conversion factor, r = {10−3 m3 liter−1} we can achieve a well posed expression,
given the assumed labels on the q-numbers at hand. The explicit computation
now is

{P, Pascal} = {n, mol}{R, Joule Kelvin−1 mol−1}
×{T, Kelvin}/({10−3,m3 liter−1}{V, liter}).

Given this well posed expression, the student can now use the calculator on
the purely numeric quantities n, R, T, V and 10−3, to get the correct value for
P . The student must report a q-number, not just the numeric quantity P. The
correct answer is: P = P Pascal, using the standard nomenclature that omits the
curly brackets {, }.

Explicit example. The harmonic oscillator Schrödinger equation.
The Hamiltonian operator for the Harmonic oscillator problem is given by

[13],

H = − �
2

2m
∂2

∂x2
+ 1

2
kx2

and the Schrödinger equation is the eigenvalue problem H�(x=E�(x). The
explicit forms of the quantities are: H = {H, Joule}, x= {x, m}, m= {m′, kg},
� = {�, Joule s}, k= {k, Joule m−2}, E= {E, Joule}. The irreducible form of Joule =
kg m2 s−2 and this shows that the derivative term is congruent to Joule and the
expression is well posed. To obtain the numerical or analytical solution of this
equation, it is convenient to map it to a pure number form by the explicit intro-
duction of dimensionless variables. Let the auxiliary q-number α2 =mk/�2 and
multiply the entire equation by −2α2/k. Then the naked derivative term is con-
gruent to m−2 and so must −α2x2 be. This shows that α2 = {α2,m−4} and that
y= √

αx is a pure number, or dimensionless variable. Now divide the previous
form of the equation by α to obtain the equation in pure number form:

(
∂2

∂y2
− y2 + β

)
ψ(y)= 0,

where the eigenvalue is β = 2mkE/�2, α= 2E/�ω and the classical frequency is
ω2 = k/m, (ω= {ω, s−1}). The analytical solution shows that the eigenfunctions
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are expressible as a product of a Hermite polynomial of order n, times a Gauss-
ian function and the eigenvalule is just n+ 1. The final solution (normalized by
Nn) in terms of q-numbers is:

En = �ω(n+ 1/2), n= 0, 1, 2, 3, . . . ,

ψ(
√
αx)=NnHn(

√
αx) exp(−αx2).

5.5. Dimensional analysis

Equations that describe the natural world must be well-posed expressions
between q-numbers. Thus, when one does not know before hand what the spe-
cific form of the governing relations are in a specific circumstance, one can use
the well posed requirement to obtain the general form of the dependence on the
variables if a complete set of these is at hand [3].

A simple example is the following. Suppose that we have a particle of mass
m moving with velocity v in free space. We would like to know what the energy
of such a particle is. Since it is in free space, there are no other variables to
consider, thus the expression for the energy must be made from just these two
q-numbers. Since energy is congruent to Joule = kg m2 s−2, then it follows imme-
diately that E= bmν2, where b is an unknown scale factor. If one does a detailed
Newtonian analysis, one finds that the scale factor b= 1/2.

This exemplifies the power of dimensional analysis. The fact that the
q-number structure can be given a formal algebraic basis establishes that dimen-
sional analysis is a sound mathematical procedure when the set of complete vari-
ables can be unequivocally chosen. This is not always the case. One may find, for
example, that one needs a length scale to complete the congruence in a partic-
ular problem, and that there is more than one length scale to choose from. In
that case, however, some experimental observation can help to choose the cor-
rect length scale.

5.6. Buckingham’s theorem

The fact that we cannot add quantities that contain different labels leads to
a rigorous method of determining the possible relations that may exist among
a set of arbitrary q-numbers. The algebraic method of obtaining these relations
is based on Buckingham’s theorem or the “
” theorem [14]. Langhaar [2] has
presented a complete demonstration of this theorem utilizing linear algebra. We
extend the theorem to the case of rational exponents here.

In order to state and prove this theorem, we return to the map between
an element, l(a1, . . . , an)= l(a1, . . . , an; 0) , of W(n) and the n-tuple of expo-
nents, (a1, . . . , an). It is evident that the set of exponents, E(n), found in W(n)
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form an Abelian additive group, where the neutral element is (0, 0, . . . , 0), and
the inverse is (−a1, . . . ,−an). Furthermore, the map �(a1, . . . , an)→ (a1, . . . , an)

is an isomorphism between W(n) and E(n). This map is clearly bijective and it
preserves the group multiplication table:

l(a1, . . . , an) · l(a′
1, . . . , a

′
n) = l(a1 + a′

1, . . . , an + a′
n)→

(a1, . . . , an)+ (a′
1, . . . , a

′
n) = (a1 + a′

1, . . . , an + a′
n).

Let (e1, . . . , en) be a basis for E(n). Then the exponent ak of �k of any q-number
is a linear combination of the basis, that is, ak = ∑n

j=1 αjkej . The elements of the
matrix α are rational numbers.

Now, consider an arbitrary set of q-numbers, q1, . . . , qν in W(n). We need
to construct monomials with integer powers of these q-numbers that are congru-
ent to the unit label. The question is, how many can we form, and what are their
exponents?

An arbitrary q-number has rational powers in the label. Thus, the first thing
we do is to find the smallest integer that is divisible by all the denominators of
the exponents in labelµ. Call that integer nµ. Then, (labelµ)nµ has only integer
powers of the basis labels. Now we must form monomials,

x=
ν∑
j=1

qj
njρj , where ρj are integers, and x is congruent to the unit label.

The exponent of labelx in E(n) is given by,
∑ν

k=1 nkρk
∑n

j=1 αjkej and this will
yield a zero exponent only if the coefficient of each basis element is zero:∑ν

k=1 nkαjkρk = 0.
This is a system of linear equations which will have m linearly indepen-

dent solutions for the exponents ρk, where m�n < ν is the rank of the matrix
αjk. The matrix nkαjk has integer entries. Thus, we have demonstrated that there
are ν − m independent monomials that can be made up of the arbitrary set
of q-numbers; call them xk. Then, it follows at once that there exists a func-
tion, f (x1, . . . , xν−m)= c, a constant, that relates all of these monomials. This is
essentially the content of Buckingham’s theorem. We have generalized the proof
to consider the possibility of rational powers in the q-numbers, thereby introduc-
ing the auxiliary integers nk into the picture. Examples of the solution of the
system of equations for particular systems can be found in the cited books on
dimensional analysis [1–4].

6. Summary

We have presented a general algebraic basis for arbitrary systems of units
such as those used in physical sciences, engineering, and economics. The alge-
braic structure of the infinite sets of labels has been established: such sets WB
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are infinite Abelian multiplicative groups with a finite basis. WB is solvable as
it admits a tower of subgroups. Extensions to include the possibility of ratio-
nal powers of labels have been included, as well as the addition of named labels.
Named labels are an essential feature of all practical systems of units. Further-
more, we have shown that physical quantities are q-numbers ∈ q = C×WB ·q is an
Abelian multiplicative group, and it is not a ring. q admits decomposition into
one-dimensional normed vector spaces over the field C among members with
equivalent labels. These properties lead naturally to the concept of well posed
relations, and to Buckingham’s theorem of dimensional analysis.
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